Head to Head Comparisons of Different FITs

Thomas F. Imperiale, MD Indiana University Medical Center

WEO CRCSC – DDW San Diego, CA May 20, 2016

What I'll discuss

- Technical / clinical features of FIT
- How to compare FIT performance
 - Technical
 - Clinical
 - Individual studies
 - Reviews of multiple studies
- Conclusion

FIT Features

- Immunoassay for human hemoglobin (hapto, albumin)
- More specific (and more sensitive) than gFOBT
- Fewer specimens required uptake higher than gFOBT
- No dietary restrictions or medication interference (Vit C)
- Can be qualitative or quantitative, manual or automated
- Advantages of quantitative FIT
 - $\ensuremath{^\circ}\xspace$ adjust cutoff to "fit" goals and resource capacity
 - Integrate test results with other features (risk stratification)

Analytic	Analytical Summary of 11 FOBTs							
Device	Sensitivity	Imprecision	Analysis time 1 sample	Analysis time 32 samples	Temperature	Sunlight	High Hb	Loading
Units	mg Hb/g		Mi	nutes		Rel	iability	
Hema-screen	0.8-1.0	S	1.1	11	U	U	U	A
MonoHaem	0.5	S	7	16-17	А	а	А	А
Hema-Chek	0.82	S	1.3	13	U	А	U	Α
Magstream	0.02-0.1	S	14.5	40	U	U	U	U
Health Check Nº 2	0.06	S	11.5	21	а	U	U	Α
Q-OB	0.02-0.15	S	10.5	30	А	U	Α	U
Hem-Check-1	0.01	S	12	50-55	А	U	А	Α
BM-Test Colon Albumin	0-5-0-65	Р	15.5	26	А	U	U	Α
HemaWipe	0.5	S	2.1	15	U	U	U	Α
Haemoccult	0.6-0.8	S	0.9	9.5	U	а	U	Α
Haemoccult Sensa	0.12-0.6	s	1.3	10	U	а	U	А
S = Satisfactory, P = Poor, A = Affect Pearson, Bennitt, Halloran. Faecal c	ed, a = Slightly a occult blood tests	ffected, S. Evalua	U = Unaffe tion Repo	ected rt MDA/200	10/05			

Proficiency	y Test Pr	ogram	Results
FIT	# Specimens	Sensitivity	Specificity
Hemoccult ICT*	1633	98.2	98.1
Hemosure	1711	94.4	91.2
Hema-Screen Specific*	699	98.1	99.4
iFOB Complete	357	87.2	80.8
Ultra FOB	836	91.6	94.1
OC-Light*	976	98.4	98.3
OC-Auto Micro 80*	586	98.8	99.6
Quick Vue iFOB*	1321	98.3	99.0
Daly JM et al. J Pri Care Co	omm Health 2013; 4:	245-50	

Clinical Metrics / Performance

- Uptake / completion
- (Adherence)
- Detection rate for CRC/AA
- Sensitivity / Specificity
- Efficiency (NN screen, scope)
- (Efficacy / effectiveness)
- (Cost-effectiveness)

FITs Available in the U.S.

<u>Name</u>	<u>Manufacturer</u>
Hemoccult ICT	Beckman-Coulter
HemoSure	Alere
InSure	Quest Diagnostics
QuickVue iFOB	Quidel
HemaScreen	Immunostics
OC-Light (manual)	Polymedco
FOBT-Chek (automated)	Polymedco

Ways of Comparing FITs

- Large-scale head to head comparison
- Model
- Published literature
 - 2 or more FITs
 - Systematic reviews

Ideal Study

- Study population 50-70 ± 5 years, average-risk → screening colonoscopy
- Intervention several FITs completed from same stool specimen
- Target lesions CRC, AA
- Test metrics
 - Sensitivity, specificity
 - Completion rate
- Required sample size = 18-25K

Case-control

Lots of Variat	ion to
<u>Çonşid</u> er	<u>Metrics</u>
 Manual vs automated 	 Sensitivity / specificity
 Qualitative vs quantitativ 	e • Participation (uptake)
 # specimens 	 Positivity rate
 Cutoff/threshold 	 Detection rate
	 # needed to
How studies vary	screen/scope
 Colonoscopy for all tested 	
Colonoscopy for ⊕ FIT / follow-up or sigmoidoscopy for ⊖ FI ⁻	г
Case-control	

1 st Au, Yr	Subject N	FITs Studied	Target lesion	Reference Std	Conclusions
Hundt, 2009	1319	Bionexia FOB-plus immoCARE-C FOB advanced PreventID CC Quick Vue & iFOB Bionexia Hb/Hp Hemoccult	Advanced Adenoma	Colonoscopy for all	 FITs > gFOBT FIT performance varies widely ImmoCARE & FOB advanced were "best"
Faivre, 2012	85,149	FOB-Gold Magstream OC-Sensor (Hemoccult II)	CRC AA	Colonoscopy if any FIT ⊕	 FIT > gFOBT 3 FITs equal
Raginel, 2013	19,797	Magstream OC-Sensor (Hemoccult II)	CRC AA	Colonoscopy if any FIT \oplus	OC-Sensor > Magstream for CRC
Brenner, 2013	2235	OC-Sensor RIDASCREEN-Hb RIDASCREEN- Hb/Hp	CRC AA Any neoplasia	Colonoscopy for all	 FITs > gFOBT 3 FITs equal

Sele	cted So	reening St	tudie	es Comp	oaring <u>></u> 2 FITs
1 st Au, Yr	Subject N	FITs Studied	Target lesion	Reference Std	Conclusions
Tao, 2013	74 CRC (10 screen detected) 1480 controls	6 qualitative 3 quantitative	CRC	Colonoscopy	 At 90% specificity, qualitative FITs = Most CRC detected Cutoffs for some FITs need adjustment
Zubero, 2014	37,999	FOB Gold (18k) OC-Sensor (19k) Both @ 100 ng/ml	CRC AA NAA	Colonoscopy for FIT positive only	 OC-Sensor superior (error rate 0.2% vs 2.3%) % stage I-II CRC 80% vs 57% (no difference)
Chiang, 2014	956,005	OC-Sensor (747k) HM-Jack (209k) Both at 20ug/g	CRC AA	⊕ FIT- colonoscopy ⊖ FIT-2 year f/u	OC-Sensor had higher PPV and lower interval cancer rate

gFOBT vs. 3 Different FITs
 85,149 average-risk adults age 50-74 years - 3rd round of screening
 Hemoccult II & 1 of 3 FITs: (two specimens) FOB-Gold (Beckman Coulter – USA) Magstream (Fujirebio – Japan) OC-Sensor (Eiken – Japan)
 Outcomes – detection rates, (ratios for sensitivity and false positivity) – FITs vs. gFOBT Faivre J, et al. Eur J Cancer 2012

gFOBT vs 3 FITs							
	FOB-Gold		Magstream		OC-Sensor		
	gFOBT	FIT	gFOBT	FIT	gFOBT	FIT	
Positive Test	2.2%	5.2%	2.3%	4.6%	1.7%	3.7%	
Colonoscopy (%)	92.4%	91.7%	92%	93%	94%	94%	
Detection of CRC Adv adenoma	1.5% 2.7%	2.8% 9.8%	1.7% 3.5%	3.3% 10.9%	1.1% 3.0%	2.7% 12.0%	
Faivre J, et al. Eur J Cancer 2012							

Brenner & Tao: 3 FIT Comparison				
Test characteristic	Outcome (n)	RIDA-Hb	RIDA- Hb/Hp	OC-Sensor
Sensitivity (%)	CRC (15)	60	53	73
	AA (111)	23	20	26
Specificity (%)	CRC	95	95	96
	AA	97	97	97
Positive PV	CRC	8.1	7.3	10.0
(%)	AA	47	41	52
Positive LR	CRC	13	11.6	16
	AA	8	6.3	9.8
Negative LR	CRC	0.42	0.49	0.28
	AA	0.79	0.82	0.76
Brenner, Tao. Eu	ır J Cancer 2013		N=2235	5

WEO CRCSC EWG 'FIT for Screening' San Diego, 20 May 2016

- Costs and effects estimated for
 - FIT cutoffs of 50, 75, 100, 150, 200 ng/mL
- Intervals of 1, 1.5, 2, and 3 years
- Ages 45 to 80
- · Outcome: life-years gained

Wilschut et al. Gastroenterology 2011

Re	eviev	vs of St	udies C	Comp	oaring <u>></u>	2 FITs
1 st Au, Yr	Study N	FITs Co	mpared	Lesio n	Reference Standard	Conclusions
Guittet, 2011	6	OC-Sensor (4 Magstream (2 Hemoccult II	4) 2) (3)	CRC AA	Colonoscopy for FIT +	- For similar PR, PPV with OC-S >Mag - Indirect comparisons lack reliability
Lee, 2013	19	OC- Hemodia OC Micro OC Light Monohaem	Heme Select FlexSure OBT Magstream Ridascreen	CRC	Colonoscopy for all (12) Colonoscopy for FIT+, 2-yr f/up (7)	 High overall accuracy for CRC Performance depends on cutoff
Launois 2014	21	Magstream OC-Sensor (Hemoccult)		CRC AA	Colonoscopy (8) Colonoscopy + f/up or sig (13)	OC-Sensor for CRC detection

Indirect comparison of two quantitative immunochemical faecal occult blood tests in a population with average colorectal cancer risk.
LGuitet, L Bailly, V Bouvier and G Launoy
Med Save 2011,18:76-81
Dot: 10.128/jme.2011.01012
Med Save 2011,18:76-81
Dot: 10.128/jme.2011
Med

tream and OC Sensor quantitative immunochemical fascal accult blood tests (FOBT) have no better performances than paparic. (G) tests in coherectal cancer screening, however terms and OC Sensor have rever been compared. We hypothalized that imited reterms and the stands have been compared. We hypothalized that imited research in control tests in the stands of the hypothalized test immunobated to comparison between these tests, taking in accurate the cut(f) the number of samples, and any they were combined (b), at least one positive sample of 2; b_{2+}, both positive samples, were constrained between these tests, taking in accurate the cut(f) the number of samples, and any they were combined (b), at least one positive sample of 2; b_{2+}, both positive samples, where for each test's (Gord). positivity rate (R) deveload to any deveload tests in the clubel (PM) where for each test's (Gord). Positivity rate (R) deveload to any deveload test tests of the test tests and the test states conducted in the net test. Bochard PM accurate the CPUB in the CPUB in the CPUB in the date evoluting CC Sensor were greater from PPV associated with GFOBT in the advanced superiority of CC Sensor.

Guittet, et al. 2011 J Med Screen

WEO CRCSC EWG 'FIT for Screening' San Diego, 20 May 2016

Annals of Internal Medicine

Accuracy of Fecal Immunochemical Tests for Colorectal Cancer Systematic Review and Meta-analysis

Jeffrey K. Lee, MD, MAS; Elizabeth G. Liles, MD, MCR; Stephen Bent, MD; Theodore R. Levin, MD; and Douglas A. Corley, MD, PhD

Study Selection: All studies evaluating the diagnostic accuracy of FITs for CRC in asymptomatic, average-risk adults. Lack of data prevented complete subgroup analyses by FIT brand.

Data Extraction: Two reviewers independently extracted data and critiqued study quality.

Canadas Josef geams), bata Synthesis (Netteen eligible studies were included and meta-analyzed. The pooled sensitivity, specificity, positive likelihood rato, and negative likelihood rato of HTS for CGC were 079 (95%), CJ, 0.69 to 0.86), 0.94 (CJ, 0.92 to 0.99), 13.10 (CJ, 10.49 to 16.38), 0.23 (CJ, 0.154 to 0.33), respectivity, with an orveal diagnostic accuracy of 95% (CJ, 93% to 97%). There was substantial hetero-

Background: Performance characteristics of fecal immunochemical tests (FIIs to scene for coloractal cancer (CRC) have been inconstant. Purpose: To synthesize data about the diagnostic accuracy of FIIs for CRC and lowerly factors affecting its performance duracteristics. Data Sources: Colme database, Including MEUINIK and MEMAGES, and bibliographies of included studies from 1996 to 2013.

Review

Conclusion: Fecal immunochemical tests are moderately sensitive, are highly specific, and have high overall diagnostic accuracy for detecting (RCC. Diagnostic performance of FITs depends on the cutoff value for a positive test result.

Primary Funding Source: National Institute of Diabetes and Diges-tive and Kidney Diseases and National Cancer Institute. Ann Intern Med. 2014;160:171-181. For author affiliations, see end of text. www.annais.org

Sy	stem	atic review c	of FIT
Trial subgroup	Trial N	CRC Sensitivity (95% CI)	Specificity (95% CI)
Colonoscopy as ref std	12	0.71 (0.58-0.92)	0.94 (0.91-0.96)
< 100 ng/ml	11	0.86 (0.75-0.92)	0.91 (0.69-0.96)
100-250 ng/ml	6	0.63 (0.43-0.79)	0.96 (0.94-0.97)
> 250 ng/ml	4	0.67 (0.59-0.74)	0.96 (0.94-0.98)
OC-Light	4	0.93 (0.83-0.97)	0.91 (0.88-0.92)
OC-Micro / sensor	5	0.86 (0.68-0.95)	0.91 (0.87-0.94)
	Lee J	K, et al. Ann Intern Med 2	014; 160:171-81

Systematic review and bivariate/HSROC random-effect meta-analysis of immunochemical and guaiac-based fecal occult blood tests for colorectal cancer screening Robert Launois^a, Jean-Gabriel Le Moine^a, Bernard Uzzan^b, Lucia I. Fiestas Navarrete^a and Robert Benamouzig^b

Background Current literature evidences higher accuracy
odds ratio (88.05). Bivariate credibility ellipses showed OCof Immunological (IFOBT) vis-vis gualac-based (pFOBT)
servering, Few well-designed head-to-head
comparisons exist.
OC-035, specificity, 037, 95%
credibility interval: 031-035).

Aim This meta-analysis assesses the performances of two iFOBTs compared with an established gFOBT using colonoscopy as the gold standard.

Advancescy a http://www.communection.commune

Presentes as size officient analyzed 21 studies. OC-Sensor was the bast test for CRC screening, with high sensitivity (0.87; 95% credibility interval: 0.73–0.95) and specificity (0.32; 95% credibility interval: 0.84–0.96), optimal LR⁺ (12.01) and LR⁻ (0.14), and a high diagnostic

December (market) as 1-uses, Conclusion OUP (miding support the use of OC-Sensor for CRC detection. The diagnostic estimates obtained may be estended to detwice model parameters for encoronic decision models and to offer insight for future dirical and public health decision making, Our futings could influence the future of FOITs within the CRC screening arsman. *Eur J Gastroentice / Health 25:879–895* 2:014 Woltes Kluwer Health | Lippincott Williams & Wilkins. European Journal of Gastroenterology & Hepatology 2014, 26:378-989

Keywords: accuracy, advanced adenomos, bivariate, colorectal cancer, diagnostic test, HSROC, literature review, meta-analysis, QUADAS Prench Network for Evaluation in Health Economics, REES France, Paris and "Service d'Hépato Gastro enterologie, Hóptal Avicenne APHP, Bobigry, France Correspondence to Robert Launcin, PhD, French Network for Evaluation in Healt Bonnomics, REES France, 28 Rue d'Aasa, 75000 Paris, France Tai: + 531 44 59 16 90; email: Launcin:reselfwandsodr

Received 16 April 2014 Accepted 16 June 2014

Launois et al 2014 Euro J Gastroenterol Hep

SR & Bivariate / HSROC Meta-Analysis

 Meta-analysis of Magstream, OC-Sensor, HO "using colonoscopy as the gold standard"

- 21 studies included
 - Average-risk population mean age > 40 years
 - Reference test
 - Colonoscopy for all
 - ullet Colonoscopy for test \oplus , follow-up for test \oplus
 - ullet Colonoscopy for test \oplus , sigmoidoscopy for test \oplus
 - Target lesions of CRC, AA
 - Diagnostic or longitudinal cohort, case-control

Launois R, et al. Eur J Gastro Hep 2014

(050/ 01)		LR +	LR 🖯
(95% CI)	(95% CI)		-
.14 (0.09-0.21)	0.95 (0.90-0.97)	2.6	0.91
.48 (0.31-0.66)	0.95 (0.93-0.96)	8.7	0.55
.37 (0.27-0.48)	0.93 (0.90-0.96)	5.6	0.68
.47 (0.37-0.58)	0.92 (0.84-0.96)	5.9	0.57
.67 (0.59-0.74)	0.93 (0.92-0.95)	9.9	0.36
.87 (0.73-0.95)	0.93 (0.91-0.95)	12.1	0.14
	.14 (0.09-0.21) .48 (0.31-0.66) .37 (0.27-0.48) .47 (0.37-0.58) .67 (0.59-0.74) .87 (0.73-0.95)	1.4 (0.09-0.21) 0.95 (0.90-0.97) 4.8 (0.31-0.66) 0.95 (0.93-0.96) 3.7 (0.27-0.48) 0.93 (0.90-0.96) 4.47 (0.37-0.58) 0.92 (0.84-0.96) 6.67 (0.59-0.74) 0.93 (0.92-0.95) 8.7 (0.73-0.95) 0.93 (0.91-0.95)	1.14 (0.09-0.21) 0.95 (0.90-0.97) 2.6 4.8 (0.31-0.66) 0.95 (0.93-0.96) 8.7 3.7 (0.27-0.48) 0.93 (0.90-0.96) 5.6 4.47 (0.37-0.58) 0.92 (0.84-0.96) 5.9 6.67 (0.59-0.74) 0.93 (0.92-0.95) 9.9 8.7 (0.73-0.95) 0.93 (0.91-0.95) 12.1

Author	N*	Brand of FIT(s)	Test Threshold (ug/g)
Chiu, HM 2016	3889	OC-Sensor	20
Aniwan, S 2015	948	SD Bioline FOB	10
Chen, YY 2014	6096	OC Light	10
Imperiale, 2014	9989	OC-FIT-CHEK	20
Hernandez, V 2014	779	OC-Sensor	20
Stegeman, I 2014	1112	OC-Sensor	10
Ng, SC 2013	4539	FIT Hemosure	50
Chiu, HM 2013	18297	OC Light	10
Brenner, H 2013	2235	OC Sensor	20
		RIDASCREEN Hemo	2
		RIDASCREEN Haemo/Haptoglobin	2
de Wijkerslooth, TR 2012	1256	OC-Sensor	20
Omata, F 2011	1085	OC-Sensor	20
Haug, U 2011	2325	RIDASCREEN Hemo	20
Brenner, H 2010	1330	immoCARE-C	10
		FOB advanced	8
		PreventID	2
		Bionexia	8
		QuickVue iFOB	10
		Bionexia Hb/Hp Complex	5
Park, DI 2010	770	OC-Sensor	20
Parra-Blanco, A 2010	402	OC-Light	10
Nakazato, M 2006	3090	OC Hemodia	16
Morikawa, T 2005	21805	Magstream 1000/Hem SP	67
Sohn, DK 2004	3794	OC Hemodia	20
Cheng, TI 2002	7411	OC Light	10
		ocus and a	

Bivariate Test Characteristics						
Sensitivity (95% Cl)						
FIT	Study N	CRC	AA	Specificity (CI)		
OC-Sensor*	8	0.76	0.27	0.94		
10-20ug/g		(0.67-0.83)	(0.24-0.31)	(0.92-0.96)		
OC-Light	4	0.84	0.42	0.92		
10ug/g		(0.63-0.94)	(0.16-0.73)	(0.81-0.97)		
Germany-	6	0.76	0.39	0.88		
based 2-20ug		(0.61-0.86)	(0.24-0.58)	(0.74-0.95)		
Others: 10-	8	0.62	0.27	0.95		
60ug/g		(0.50-0.73)	(0.17-0.40)	(0.90-0.98)		
*less clinical and statistical heterogeneity for AA, none for CRC						

Would network meta-analysis be useful?

- Multiple treatment MA, mixed-treatment comparison
- Combines direct and indirect evidence from all (RCTs) of interventions
- Strengths
- Compare interventions when few/no head-to-head comparisons
- Potential for increased certainty of the evidence
- Liabilities
 - Are study characteristics of direct comparisons used to calculate indirect estimates the same/similar among studies?
- Are the methods of NMA adaptable to FIT?

Conclusions

- The published literature is replete with head-tohead comparisons of FITs
- Due to variation in study design, test threshold and other features, a comprehensive comparison of FITs remains challenging.
- Several FITs show very good-to-excellent test characteristics
 - OC-Sensor, OC-Light
- Choice of FIT requires consideration of

 -screening setting, volume, and available resources
 -close monitoring to ensure continued performance.

Acknowledgement

- Tim Stump, MA IU Biostatistics
- James Allison, MD U.S. FIT guru