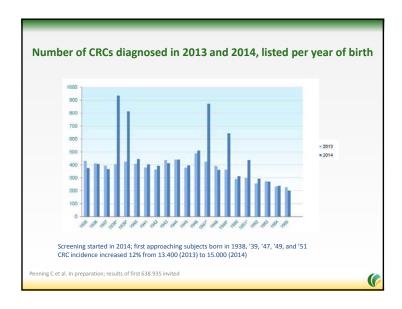
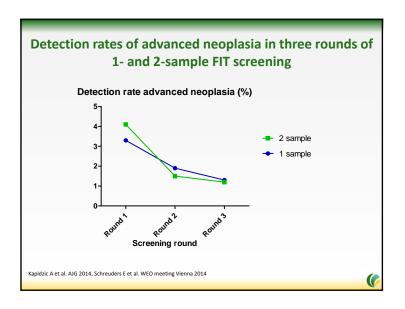
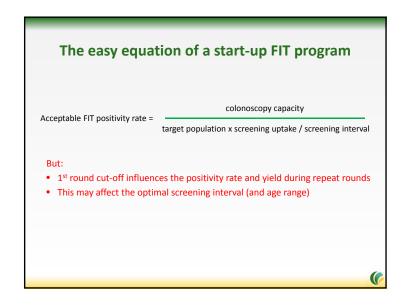
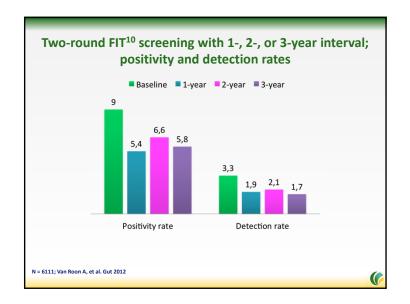

Country	Cut-off (µg Hb/g)
Netherlands (pilots)	10
Belgium, Spain, New Zealand	15
British Columbia*, Chile, Denmark, England, Italy, Saskatchewan, Uruguay	20
France, Martinique	30
Thailand	40
reland	45
Netherlands	47
Slovenia*	67
Scotland	80
Nova Scotia*	300

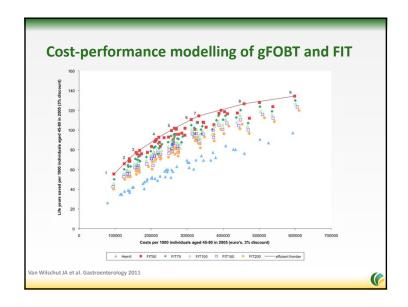
	What determines an appropriate cut-off level?
•	Selection of specific cut-off does not influence:
	 uptake of screening
	 numbers of FIT tests, lab activities, costs of primary screening, etc
•	Increase of cut-off is associated with:
	 lower colonoscopy demand
	higher PPV; i.e. lower number-needed-to-scope to detect advanced neoplasia
•	This comes at a price:
	 higher miss rate of advanced neoplasia
	 potentially the need for a shorter screening interval
	 potentially the need for a shorter screening interval

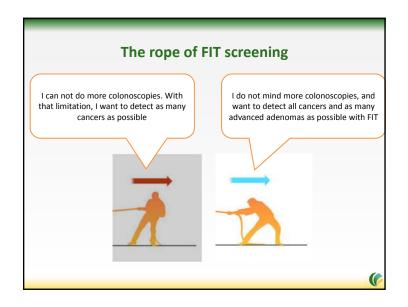


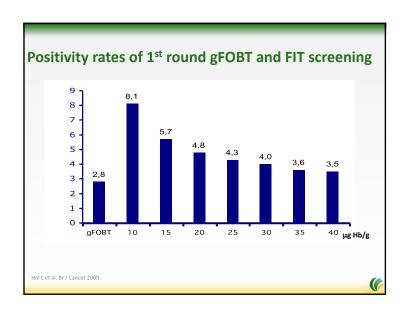


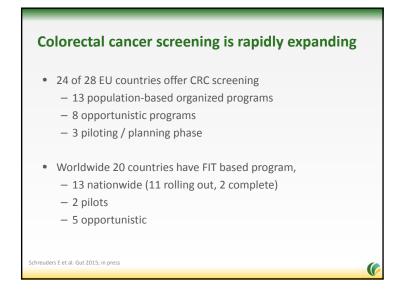

	Pilots	National program	
	Filots	1st phase cut-off 15 µg Hb/g	
Participation (%)	50 - 62	68	
FIT positivity (%)	6.4	12.0	
Detection of CRC*	4.5	5.9	
Detection of AN*	28.3	36.2	
PPV for CRC (%)	8.2	6.7	
PPV for AN (%)	51.6	40.2	
NN Scope for AN	1.8	2.5	


The easy equation of a start-up FIT program		
	colonoscopy capacity	
Acceptable FIT positivity rate =		
	target population x screening uptake / screening interv	
For example:		
 Colonoscopy capacity 	/ is 2000 / year	
 Target population of : 	100,000 people	
 Screening uptake (par 	rticipation) = 60%	
 Screening interval is 2 	2 years	
➤ Acceptable FIT positivity ra	ate = 2000 / [(100,000 x 0.6) / 2]	
	= 2000 / (60,000 / 2) = 2000 / 30,000 = 6.6%	


	Pilots	National program 1st phase cut-off 15 µg Hb/g	National program 2nd phase Cut-off 47 µg Hb/g
Participation (%)	50 - 62	68	72
IT positivity (%)	6.4	12.0	7.2
Detection of CRC*	4.5	5.9	5.0
Detection of AN*	28.3	36.2	25.4
PPV for CRC (%)	8.2	6.7	9.5
PPV for AN (%)	51.6	40.2	48.1
NN Scope for AN	1.8	2.5	2.1






Conclusions Modeling data and pilot studies suggest that the most efficient approach during the steady state phase of a screening program is: use of a low cut-off adjustment of screening interval Future studies have to demonstrate whether this can be further optimized, such as by: adjustment of the target age range initial 2-FIT screening at low cut-off

Conclusions There is no universal optimal cut-off for any given situation For cut-off selection, there are two distinct phases in a screening program: initial roll-out steady state During the roll-out phase, the appropriate cut-off is primarily determined by size of the target population participation rate colonoscopy capacity screening interval

